STANDARD SURFACE FINISH for
TRANSMISSION PULLEYS

MPTA Standard
Contributors

B&B Manufacturing, Inc. LaPorte, IN www.bbman.com
Baldor Dodge Maska Greenville, SC www.baldor.com
Carlisle Transportation Products, Inc. Franklin, TN www.carlisletransportationproducts.com
Custom Machine & Tool Co., Inc. Hanover, MA www.cmtco.com
Emerson Industrial Automation Maysville, KY www.powertransmissionsolutions.com
Gates Corporation Denver, CO www.gates.com
Goldens’ Foundry & Machine Co. Columbus, GA www.gfmco.com
Lovejoy, Inc. Downers Grove, IL www.lovejoy-inc.com
Martin Sprocket & Gear, Inc. Arlington, TX www.martinsprocket.com
Maurey Manufacturing Corp. Holly Springs, MS www.maurey.com
TB Wood’s Incorporated Chambersburg, PA www.tbwoods.com
Torque Transmission Fairport Harbor, OH www.torquetrans.com
Veyance Technologies, Inc. Fairlawn, OH www.goodyearep.com/PTP
Goodyear Engineered Products

Disclaimer Statement
This publication is presented for the purpose of providing reference information only. You should not rely solely on the information contained herein. Mechanical Power Transmission Association (MPTA) recommends that you consult with appropriate engineers and/or other professionals for specific needs. Again, this publication is for reference information only and in no event will MPTA be liable for direct, indirect, incidental or consequential damages arising from the use of this information.

Abstract
This standard defines the maximum surface finish for transmission pulleys.

Copyright Position Statement
MPTA publications are not copyrighted to encourage their use throughout industry. It is requested that the MPTA be given recognition when any of this material is copied for any use.
Foreword

This foreword is provided for informational purposes only and is not to be construed to be part of any technical specification.

This standard was updated to the format defined by MPTA-A1. The contributors list was updated to reflect the current members. No technical revisions were made.

Suggestions for the improvement of, or comments on this publication are welcome. They should be mailed to Mechanical Power Transmission Association, 5672 Strand Court, Suite 2, Naples, FL 34110 on your company letterhead.

Scope

This informational bulletin applies to v-groove sheaves, cylindrical (flat) pulleys and synchronous sprockets.

The machined surface finish of various areas of transmission pulleys shall not be coarser than the values in Table 1 below:

<table>
<thead>
<tr>
<th>Machined Surface Area</th>
<th>Maximum Surface Roughness Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Pulley Groove Sidewalls</td>
<td>3.2 Micrometer (125 Microinch)</td>
</tr>
<tr>
<td>V-Pulley OD and Rim Edges</td>
<td>6.3 Micrometer (250 Microinch)</td>
</tr>
<tr>
<td>Flat Pulley Rim ODs</td>
<td>6.3 Micrometer (250 Microinch)</td>
</tr>
<tr>
<td>Trapezoidal Synchronous Pulley Tooth Flanks and Tips</td>
<td>3.2 Micrometer (125 Microinch)</td>
</tr>
<tr>
<td>Curvilinear Synchronous Pulley Tooth Flanks and Tips</td>
<td>1.6 Micrometer (63 Microinch)</td>
</tr>
<tr>
<td>Rim IDs, Hub Ends, Hub ODs</td>
<td>As Cast Surface</td>
</tr>
<tr>
<td>Bores – Straight and Tapered</td>
<td>3.2 Micrometer (125 Microinch)</td>
</tr>
</tbody>
</table>

* Note: The measuring methods defined in ASME-B46.1 shall be used to determine these values.

END OF DOCUMENT